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Energy barrier scalings in driven systems
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Energy landscape mappings are performed for two different molecular systems under mechanical loads.

Barrier heights are observed to scale as AU~ 67/

, where & is a residual load. Catastrophe theory predicts that

this scaling should arise for vanishing &; however, this region is irrelevant in physical processes at finite
temperature because thermal fluctuations cause the system to cross over the barrier before reaching the small-
S regime. Surprisingly, we find that the AU~ 6”2 scaling is valid far beyond the vanishing & regime described
by catastrophe theory. We discuss how this scaling will therefore be relevant at finite temperatures and gives

corrections to Eyring’s theory for transition rates.
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I. INTRODUCTION

In a broad range of condensed matter systems, one is
interested in the question of how some material responds to
an external mechanical load. External loads cause liquids to
flow, in Newtonian or various types of non-Newtonian flows.
Glassy materials, composed of polymers, metals, or ceram-
ics, can deform under mechanical loads, and the nature of the
response to loads often dictates the choice of material in
various industrial applications. In biological systems, the re-
sponse of proteins to external loads governs aspects of cell
adhesion and muscle function.

The nature of all of these responses depends on both the
temperature and loading rate. As described by Eyring [1],
mechanical loading lowers energy barriers, thus facilitating
progress over the barrier by random thermal fluctuations.
The Eyring model approximates the loading dependence of
the barrier height as linear. The Eyring model, with this lin-
ear barrier height dependence on load, has been used over a
large fraction of the last century to describe the response of a
wide range of systems [2] and underlies modern approaches
to biophysical rupture processes [3-5], sheared glasses [6,7],
etc.

The linear dependence will always correctly describe
small changes in the barrier height, since it is simply the first
term in the Taylor expansion of the barrier height as a func-
tion of load. It is thus appropriate when the barrier height
changes only slightly before the system escapes the local
energy minimum. This situation occurs at higher tempera-
tures; for example, Newtonian flow is obtained in the Eyring
model in the limit where the system experiences only small
changes in the barrier height before thermally escaping the
energy minimum.

As the temperature decreases, larger changes in the barrier
height occur before the system escapes the energy minimum
(giving rise to, for example, non-Newtonian flow). In this
regime, the linear dependence is not necessarily appropriate,
and can lead to inaccurate modeling. For example, Li and
Makarov [8] have shown that there is a nonlinear barrier
height dependence in stretched proteins, and that the assump-
tion of a linear dependence in the analysis of experimental
results leads to inaccurate conclusions.
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The present investigation addresses this load dependence
of the barrier height. The analysis is based on the energy
landscape formalism [9], which considers dynamics to be the
sum of vibrational-like motion within energy minima and
transitions between energy minima. Barriers are associated
with saddle points that connect adjacent energy minima. In
Sec. I we review some basic results from the theory of
simple catastrophes and extend them to explain our subse-
quent numerical observations. In Sec. III we present our nu-
merical observations for a simple analytical model potential
energy surface (PES) in one dimension and our fully atom-
istic glassy solid and protein models. In Sec. IV we discuss
how the barrier scalings impact rate theoretic approaches,
and finally make some concluding remarks.

II. CATASTROPHE THEORY

In molecular systems, the energy is a smooth function of
the internal degrees of freedom plus a control parameter
(e.g., stress or strain) which describes the loading
conditions." As the control parameter is varied, any mini-
mum in the landscape will flatten out in some direction as the
minimum collides with a first-order saddle point [10-12]
(see Fig. 1). This type of externally induced topological
change in a function is known as a fold catastrophe [13].

It has long been appreciated that these fold catastrophes
induce universal scalings of particular features of the PES in
the limit where the minimum and saddle point are infinitesi-
mally close together [13]. In this limit, the function has the
lowest-order Taylor expansion2

U=-Ax-BxéS (1)

because the first-order term (in the internal degrees of free-
dom) is zero at a minimum or saddle point, and the second-

'"The smoothness underlies the results we present below, and dif-
ferences would arise in discontinuous models [4,28].

The irrelevant directions (orthogonal to the reaction coordinate)
on the potential energy landscape can be taken into account in a
straightforward way, entering quadratically. They do not change the
scalings, and we do not discuss them further.
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FIG. 1. Left: Energy from Eq. (8) for various 8. 6=0, solid;
—1/8, dotted; —1/4, dashed. Right: Bifurcation diagram indicating
the locations of the extrema as a function of 6. Minima, solid;
barrier, dotted. At 6=0 the minimum of interest collides with a
barrier. At = 6,,;,=—1/4, the barrier collides with a distant mini-
mum and ceases to exist; it makes no sense to discuss quantities
such as AU for 6< 8p,-

order term (projected along the direction that connects the
minimum and barrier) is zero at the point where the mini-
mum and saddle point collide. In Eq. (1), x is the projection
of the system’s coordinates onto the zero-curvature direction,
d'is the control parameter’s distance away from the singular-
ity, and A and B are positive constants. To obtain the scaling
laws, we note that the minimum and saddle point, x_ and x,,
are the points where the energy derivative vanishes, the cur-
vature along the reaction coordinate at the minimum and
saddle point correspond to the second partial derivatives of

the function, \_= ‘72—(2]|x_, A= (;[7] v, and the height of the

x

barrier, AU, corresponds to AU=U(x,)—U(x_). This analysis
leads to the following scaling relations:

-BS
Cxmx = A 22 2
x_=x, A (2)

A=\, =644 22 (3)
- 347

_Bs\3"2

AU=2A<—) . (4)

3A

The fold ratio r;=6AU/ (2A_x?) is unity when all three of
these scaling relations are valid [14]. These arguments appeal
only to &’s role as a control parameter and are equally valid
when & represents, e.g., an imposed strain or stress. Recently,
the consequences of these scalings have been discussed
quantitatively in the context of phenomenological models
[15—17]. Fold ratios in incipient catastrophes have been mea-
sured in molecular simulations [14], but the individual scal-
ing relations have not previously been addressed in exter-
nally driven molecular level simulations.
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These scaling relations must be obtained in the limit &
— 0, but at finite temperature, thermal fluctuations cause the
barrier to be crossed before this vanishing-J regime is being
reached. Little attention has been paid to the accuracy of
these scaling relations for the physically meaningful finite-&
regime. While the fold ratio has been shown to deviate sig-
nificantly from unity at finite & [14], the accuracy of the
scaling relations for the individual quantities has not previ-
ously been addressed.

Clues to how the scaling breaks down at finite |8 are
obtained from a (1 +1)-dimensional energy function U(x, 8),
based on arguments similar to those given in [11]. The only
requirement we make of U is that the coupling to the control
parameter is bilinear over the region of interest: U(x, )
=Uy(x)—BoxS. Demanding that (dU/dx) remain zero as we
change & requires that

d(oU\ &FU [dxy\ FU
A=t 2 (5)
do\ ox xdd \d&) ox %
dx, B
=502 (6)
dé )\,

where x; is a stationary point. The energy of the stationary
point then changes according to

d_U_<%> u
ds \ds) ox

ou U

+—=—=
5 9o

0

= By, (7)

where the second equality follows from mechanical equilib-
rium. The fold scalings obey the above relations between the
energy, position, and curvature of a stationary point, but
these latter relations are more general because they are based
on much weaker assumptions about the form of the energy
function than the cubic form used to obtain the fold scalings.
Since the energy barrier is obtained after two integrations of
the inverse curvature, we anticipate that, as the load is
backed away from the catastrophe, deviations from the scal-
ing relations should occur first for the curvature, then for the
position, and finally for the energy; i.e., the barrier height
scaling should be more accurate at finite 6 than the other
scaling relations.

III. LANDSCAPE GEOMETRY

We first test this hypothesis regarding the relative accu-
racy of the barrier height scaling on a simple, analytically
solvable model. This simple model includes the next-order
term in the Taylor expansion for the energy, giving a fourth-
order polynomial

U=-x—x6+x*. (8)

The landscape for this energy function for various & is shown
in Fig. 13As 6 goes to zero, the (left hand) minimum and the
energy barrier join together at x=0. As ¢ is backed away

3Prefactors on each of the three terms may be absorbed into a
redefinition of length, energy, and 6.
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from zero, the minimum and barrier move apart. As & is
backed further away from zero, the barrier eventually col-
lides with some other minimum at 6=-1/4, rendering the
quantities AU, \,, x, undefined. The results for this simple
model are consistent with our expectation that the scaling of
the barrier height will be more accurate than the scaling of
the curvature: at the largest possible values of &, the barrier
height scaling remains accurate to within 10%, while the
scaling for A_ is in error by 100%, and the scaling prediction
for A, is infinite in error (A, vanishes altogether). Analogous
results are obtained with a negative fourth-order term, in
which case the maximal |8] occurs when the minimum col-
lides with the other barrier (in this case A, is at 50% of the
value from the scaling relation, and \_ vanishes altogether).
Similar results are obtained for other simple, analytically
solvable models.

We have tested these ideas in simulations of realistic ato-
mistic models by tracking local minima and saddle points as
a control parameter is varied. To check the generality of our
arguments, we investigate two very different systems (a
model glass and a model protein), and consider both strain
and stress as control parameters.

The model glass simulations use the Stillinger-Weber
80:20 mixture [18], and include 500 particles in an ortho-
rhombic simulation cell with periodic boundary conditions
(the Stillinger-Weber functional form, which is similar to the
Lennard-Jones potential, is used because continuous deriva-
tives at a finite cutoff are necessary to analyze the energy
landscape at the required precision). The glassy state was
produced by a T=0 quench from an equilibrated liquid at a
fixed density of 1.2. Strain was induced via volume-
preserving uniaxial extension. For further details, see Ref.
[19]. The model protein is the Thirumalai model [20], which
consists of 46 sites that interact with bond stretching, angle
bending, torsion, and nonbonded (Lennard-Jones) interac-
tions. The starting configuration was the global energy mini-
mum, located using techniques discussed elsewhere [12].

A minimum is tracked by repeatedly minimizing the en-
ergy as the control parameter is varied in small increments.
Similarly, a saddle point is tracked by repeatedly minimizing
the sum of the squares of the forces as the control parameter
is varied in small increments (the saddle point is found ini-
tially by searching halfway along the vector that connects
two minima). All numerical minimizations are performed us-
ing a variable metric algorithm, and the eigenvalues and
eigenvectors of the system are computed using a standard
QL reduction algorithm [21].

Results for the glass, with shear strain as the control pa-
rameter, are shown in Fig. 2. Since the system is multidimen-
sional, it will have many eigenvalues at the minimum, and
we take A_ to be the smallest of these. The magnitude of the
single negative eigenvalue at the barrier is denoted as A,. We
choose to use \_ to compute the fold ratio.

In the small-& limit all of the scaling relations [Egs. (2),
(3), and (4)] are accurate, and the fold ratio is unity. This
behavior is of course expected, because the catastrophe is of
the fold type. In terms of the large-& behavior, the results are
fully consistent with the ideas based on the arguments above.
First, the barrier eigenvalue goes to zero at about y.—7y
~0.007 in a collision with some other minimum. Also, the
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FIG. 2. (Color online) From top to bottom AU, Ax, \_ (X sym-
bols) and X, (+ symbols), and |ry—1| upon approach to a typical
catastrophe. The solid (red) lines are the theoretical scaling predic-
tions [Egs. (2)—(4)] with prefactors determined by a fit to the small-
est two decades of y,.— 7y shown. v, is determined via optimization
of AU to the (,—v)¥? form.

accuracy of the scaling relation for the curvature (3) is quite
poor in comparison with the accuracy of the scaling relation
for the barrier height (4), with the barrier height scaling be-
ing a reasonable approximation over the entire interval up to
y.—y~0.007".

For the protein model, the end to end distance of the
protein, L, can be taken as the control parameter. As shown
in Fig. 3, both increasing and decreasing L cause the lowest
curvature at the minimum to go to zero, indicating the onset
of catastrophes. As expected, the scaling relations are accu-
rate at small values of &, where 6, is L.—L and L, is the
length at which the minimum and barrier collide. At large 9,
the scaling relation for the curvature becomes poor while the
scaling relation for the barrier height is reasonably accurate
over the entire range of 8. In contrast to the Lennard-Jones
case, it is the minimum that disappears in a collision with an
extraneous barrier with A_ going to zero at the maximal L,
—L, but, in both cases, the barrier scalings are found to be
superior to the scalings of either of the curvatures.

To use force as a control parameter in the protein model,
L is reinstated as a bona fide degree of freedom, and an
external coupling is introduced so that U,,=U,,,—FL, where

“The sharp transition in A_ in Fig. 2 can be understood in terms of
multidimensional hybridization effects. Above y.—y~ 107*, other
eigenmodes have eigenvalues that are lower than the curvature
along the reaction coordinate, and it is only below y.—y~ 107 that
the reaction coordinate becomes a bona fide eigenmode. The eigen-
mode at the barrier, on the other hand, is always reasonably well
aligned along the reaction coordinate.
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FIG. 3. (Color online) Top, AU, and bottom, \_, for the protein
model in a length-controlled mode as functions of L.—L where L is
the end to end length and L. is the value of length at which the
minimum and barrier collide.

Ui, is the usual internal energy of the protein. As the argu-
ments for the fold scaling relations appeal only to the
smoothness of the energy function and not the particular
mode of loading, we expect analogous results when force is
the control parameter. AU and A_ are plotted in Fig. 4. Again,
all scaling relations are accurate at small &, but at large & the
scaling relation for AU is much more accurate than the scal-
ing relation for A_.

IV. RATE THEORY

In order to understand the behavior of a system under
load, one often introduces a one-dimensional, overdamped
Langevin equation, where the single spatial coordinate rep-
resents displacement of the system along its reaction coordi-
nate. According to Kramers’ theory [22], the rate at which
the system makes a transition over the barrier is given by

—
k= VoA exp(— AU/kgT) 9)
2y,
where k is the rate at which the system makes a transition, 7,
is the viscous bath coupling parameter, and N\, and AU de-
pend on the load. Eyring’s theory [1] for transition rates in
loaded molecular systems can be considered as a Kramers

FIG. 4. (Color online) Top, AU, and bottom, \_, for the protein
model, as functions of F.—F where F is the external force and F.. is
the value of force at which the minimum and barrier collide.
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FIG. 5. (Color online) Landscape geometry and Kramers rates
(inset) upon approach to the maximum force peak in the protein
model. AU, circles (black); A_, squares (red); \,, diamonds (green);
fit to AU~ 6F, solid (black); fit to AU~ S6F*?, dashed (orange).
Inset: True Kramers rate (—\,\_)"2 exp(=AU/kyT), X’s (black);
Eyring form, N\gexp[—a(F.—F)/kgT], solid (black); modified Ey-
ring form, N exp[—a(F.—F)¥?/kgT] dashed (orange). a and F, are
obtained from the fits shown in the main plot. Ay was taken to be
2.25.

theory with the further assumptions that the preexponential
factor is not important and can be taken as constant and that
the barrier height varies linearly with load. The Eyring
theory, of course, must be a good approximation if the load
only varies by a small amount before the system makes a
transition.

Our results show that the linear load dependence approxi-
mation generically overestimates the transition rates since
the proper scaling form AU~ (F,—F)*? goes to zero more
slowly than linearly. To underscore the importance of this
point, we consider the above rate theories in conjunction
with results for the protein model. Figure 5 shows results for
AU, \,, and both linear and (F,—F)¥? fits for AU (note that
these results are for a different barrier than shown in Fig. 4).
The inset to Fig. 5 shows a comparison of transition rates
calculated by the Kramers theory, Eq. (9), using (i) the actual
measured values of N and AU, (ii) the Eyring theory in
which the preexponential factor is taken to be constant and
AU decreases linearly with the load, and (iii) a modified
Eyring theory in which the preexponential factor is taken to
be constant and AU is given by a fit to the scaling form (4).
The rates are given in units of the strength of the viscous
bath coupling 7y,. To set an experimentally relevant energy
scale, we evaluate the rates at the highest temperature for
which the native protein structure is thermodynamically
stable, kgT=0.4 (in dimensionless energy units) [23].

The first thing to note in Fig. 5 is that the barrier scaling
Eq. (4) is again very accurate throughout the entire range of
loading for which the barrier exists, while the curvature scal-
ings do not become relevant until much nearer the catastro-
phe event; in fact the changes in the curvature are not even
monotonic over the range on which the (3/2) barrier scaling
is accurate. From the inset to Fig. 5, it is clear that the modi-
fied Eyring form gives a much better approximation to the
Kramers transition rates. The accuracy of the modified Ey-
ring form is due to both the accuracy of the barrier scaling
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over a large range of loads, and the fact that the curvatures
only enter into Eq. (9) as a preexponential factor. Note that
this analysis is carried out at the highest temperature for
which the native protein state is stable, and thus the improve-
ment of the modified Eyring form in comparison to the Ey-
ring form will be even more significant at lower tempera-
tures.

Several recent works [17,24-27] have focused on these
deviations from Eyring behavior based on the scaling forms
(2), (3), and (4). Johnson and Samwer [27] have argued
along similar lines to us that the (F,—F)*? barrier scaling
should lead to a 7%3 dependence in the yield stress and gave
experimental data from many different metallic glasses to
support their claim. The authors needed to suppose that the
(3/2) barrier scalings held over reasonably large intervals of
load. The present work demonstrates precisely this.

Other studies focused on time-ramped loads. Dudko and
co-workers [24], working in the context of an explicitly
time-dependent load, showed how the scaling forms were
necessary to collapse average rupture force data at differing
temperatures and loads. Dias et al. [26] pointed out that the
catastrophes in systems with high degrees of symmetry (in
their case, a circular chain of bonds) need not be of fold type
and could lead to scalings other than the (3/2) scaling of the
fold catastrophe. Our results support the notion that the fold
scalings are those that are relevant to more realistic molecu-
lar models.
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V. SUMMARY

In summary, barrier heights in molecular systems are
found to follow, to fairly high accuracy, the scaling relation
AU~ &%%. While this scaling relation has been known to be
rigorously valid in the 6— 0 limit, this vanishing-6 regime is
not physically significant at finite temperature, because ther-
mal fluctuations cause the system to cross the barrier before
the low-6 regime is reached. However, our investigation
shows that the scaling relation is appropriate outside of the
low-6 limit—even when the scalings fail dramatically for the
curvatures or the fold ratio. The barrier height scaling is
relevant for all driven thermal systems, including flowing
liquids, mechanically deformed glasses, and stretched pro-
teins. Quantitative analyses of these driven thermal systems,
based on modifications of Eyring’s theory to take the proper
scalings of the barrier height into account, will lead to an
improved understanding and description of these systems.
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